Problem 1 (Laplace Equation in Polar Coordinates). The goal of this problem is to use the chain rule to transform the differential operator $\partial_{xx} + \partial_{yy}$ to polar coordinates.

- 1. Let f = f(x, y) with $x = r \cos \theta$ and $y = r \sin \theta$. Note that $f_x = f_r r_x + f_\theta \theta_x$, write a similar expression for f_y .
- 2. We can differentiate the f_x again to get $f_{xx} = (f_{rr}r_x + f_{r\theta}\theta_x)r_x + f_rr_{xx} + (f_{\theta r}r_x + f_{\theta\theta}\theta_r)\theta_x + f_{\theta}\theta_{xx}$. Write the same expression for f_{yy} .
- 3. Add together f_{yy} and f_{xx} and simplify (one term should be $f_r(r_{xx} + r_{yy})$).
- 4. Use $r^2 = x^2 + y^2$ to get expressions for $r_{xx} + r_{yy}$ and $r_x^2 + r_y^2$ (the second should equal 1).
- 5. Use $\tan \theta = \frac{y}{x}$ to get expressions for θ_x, θ_y and second derivatives, should get $\theta_x^2 + \theta_y^2 = 1/r^2$
- 6. Plug in everything to hopefully get $\partial_{xx} + \partial_{yy} = \partial_{rr} + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_{\theta\theta}$
- 7. Verify that $y/(x^2 + y^2)$ solves the laplace equation (use polar coordinates and use the above).

Problem 2. Let $T(x, y) = x^2 e^y - xy^3$ with $x(t) = \cos(t)$ and $y(t) = \sin(t)$, find $\frac{dT}{dt}$ by the chain rule and by substituting t in and differentiating normally.

Problem 3. Find the point in \mathbb{R}^3 where the z-axis intersects the plane that is tangent of the graph of $z = e^{x-y}$ at (1,1,1)

Problem 4. Suppose that the energy of our system is given by E(t, x) where t is time and x is a particle in our system, which is itself a function of time and it's mood x = x(t,m). Use the chain rule to write $\frac{\partial E}{\partial t}$. Do you see the notational issue with partial differentiation?

Problem 5. Show that $f(x,y) = x^2 + y^2$ is differentiable by showing that

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \varepsilon_1\Delta x + \varepsilon_2\Delta y$$

where $\varepsilon_1, \varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to 0$

Problem 6 (Challenge). Let f = f(x, y) be a infinitely differentiable function such that $f(x, y) \leq 0$ for all $x^2 + y^2 < r$ for a fixed r and f(x, y) = 0 for $x^2 + y^2 = 1$. So on a disc of radius r, f is bounded by the values on its boundary. Prove that the directional derivative of f in the outward normal direction of the circle of radius r, at any point on the circle, is greater than or equal to 0.